皇家永利

师资队伍

副教授

当前位置: 首页>>师资队伍>>副教授>>正文

马柱

发布日期:2023年05月05日    作者:    审核:    浏览:[]

网站照片-马柱

姓名

马柱

职称

新能源科学与工程教研室主任/副教授/硕导/

学科专业

太阳电池

所属部门

新能源科学与工程教研室

研究中心

光伏新能源现代产业学院

联系方式

deve198509@163.com

个人简历

马柱,副教授,硕士生导师,湖北黄石人,中共党员。博士毕业于电子科技大学,加州大学洛杉矶分校电子工程系、加州纳米研究中心(CNSI)联合培养博士。主要从事光伏技术基础与应用研究,特别是在钙钛矿太阳能电池材料与器件领域取得重要进展。目前,已在国际期刊Chemical Eng. J., Nano Lett., J. Energy. Chem., Sci. China Mater., Nano Res., J. Mater. Sci. Technol., ACS App. Mater. Inter., ACS Appl. Energy. Mater., Sol. Energy Mater. & Sol. Cells等SCI论文60余篇,累计引用超过700次;申请国家发明专利35余件,目前已授权国家发明专利20件;参加国际国内学术会议16次,受邀做口头报告10次。目前担任ACS AMI、ACS AEM、PCCP等15余个国际知名SCI期刊审稿人。主持和参与了省部级和企业联合项目10余项。受聘通威太阳能有限公司特聘技术顾问。

主要研究领域

1. 大面积化钙钛矿太阳能电池及组件

2. 钙钛矿太阳能电池材料与器件

3. 光伏制氢及其应用

4. 晶硅/钙钛矿叠层太阳能电池

5. 聚合物太阳能电池材料与器件

主要科研项目

1. 皇家永利科技厅面上项目,“钙钛矿光伏制氢集成装置的设计与构建”,2022-2023年,主持

2. 皇家永利科技厅面上项目,“有机无机杂化钙钛矿材料在太阳能发电储能双功能集成器件中的应用基础研究”,2022-2023年,骨干

3. 国家重点实验室开放基金,“光伏制氢集成器件的研究”,2021-2022,主持

4. 企业横向,“高效钙钛矿-晶硅叠层太阳电池技术开发”,2023-2024年,骨干

5. 西南石油大学“揭榜挂帅”,“光伏制氢材料与系统”,2022-2023,骨干。

代表性成果

1、 论文著作

[1] Zhu Ma*, et al. Orientation-controlled mesoporous PbI2 scaffold for 22.7% perovskite solar cells.Science China Materials. 2023, accepted.

[2] Zhu Ma*, et al. Heterogeneous lead iodide obtains perovskite solar cells with efficiency of 24.27%. Chemical Engineering Journal. 2022, 448, 137676.

[3] Zhu Ma, et al. Managing interfacial properties of planar perovskite solar cells using Y3N@C-80 endohedral metallofullerene. Science China Materials. 2022, 65, 2325-2334.

[4] Zhu Ma*, et al. Excess PbI2 evolution for triple-cation based perovskite solar cells with 21.9% efficiency. Journal of Energy Chemistry. 2021, 66, 152-160.

[5] Zhu Ma, et al. Improving inter-phase charge transfer via defect passivation for efficient Quasi-2D (BA)(2)(FA)(8)Pb9I28 perovskite solar cells. Materials Science in Semiconductor Processing. 2021, 138, 106296.

[6] Zhu Ma, et al. Controllable perovskite crystallization via platelet-like PbI2 films from water processing for efficient perovskite solar cells. Journal of Alloy and compound. 2021, 885, 106900.

[7] Zhu Ma, et al. Synergistic Defect Passivation for Highly Efficient and Stable Perovskite Solar Cells Using Sodium Dodecyl Benzene Sulfonate. ACS Applied Energy Materials, 2021, 4, 5, 4910-4918.

[8] Zhu Ma, et al. Efficient carrier transport via dual-function interfacial engineering using cesium iodide for high-performance perovskite solar cells based on NiOX hole transporting materials. Nano Research, 2021, 14, 11,3864-3872.

[9] Zhu Ma, et al. Uniaxially Oriented Monolithically Grained Perovskite Films for Enhanced Performance of Solar Cells. Journal of Physical Chemistry C. 2021, 125, 35, 19131-19141.

[10] Zhu Ma, et al. Synergistic Defect Passivation for Highly Efficient and Stable Perovskite Solar Cells Using Sodium Dodecyl Benzene Sulfonate. ACS Applied Energy Materials, 2021, 4 (5) , 4910-4918

[11] Zhu Ma, et al. Defect passivation strategy for inorganic CsPbI2Br perovskite solar cell with a high-efficiency of 16.77%. Journal of Materials Science & Technology. 2021, 82(20) : 40-46.

[12] Zhu Ma*, et al. Preparation and properties of optoelectronic conversion films of perovskite modified by octadecyl-trichloro silane. Organic Electronics, 2021, 88, 106028.

[13] Zhu Ma, et al. Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells. Journal of Materials Science & Technology. 2020, 66,150-156.

[14] Zhu Ma, et al. Effects of Annealing Time on Triple Cation Perovskite Films and Their Solar Cells. ACS Applied Materials & Interfaces, 2020, 12(26) : 29344-29356.

[15] Zhu Ma*, et al. Nicotinamide as Additive for Microcrystalline and Defect Passivated Perovskite Solar Cells with 21.7% Efficiency. ACS Applied Materials & Interfaces, 2020, 12(47): 52500-52508.

[16] Zhu Ma*, et al. Oxidization-Free Spiro-OMeTAD Hole-Transporting Layer for Efficient CsPbI2Br Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12(47) :52779-52787.

[17] Zhu Ma, et al. Rising from the Ashes: Gaseous Therapy for Robust and Large-Area Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12(44) : 49648-49658.

[18] Zhu Ma, et al. Enhanced performance of perovskite solar cells using DNA-doped mesoporous-TiO2 as electron transporting layer. Solar Energy, 2020, 206 :855-863.

[19] Zhu Ma*, et al. Efficient CH3NH3PbI3-x(SeCN)x perovskite solar cells with improved crystallization and defect passivation. Journal oF Alloys and Coumpounds, 2020, 822: 153539.

[20] Zhu Ma, et al. Triphenylamine hydrophobic surface prepared by low-temperature solution deposition for stable and high-efficiency SnO2 planar perovskite solar cells. Journal of Alloys and Coumpounds. 2020, 830 : 154710.

[21] Zhu Ma*, et al. Constructing Graded Perovskite Homojunctions by Adding Large Radius Phenylmethylamine Ions for Sequential Spin-Coating Deposition Method To Improve the Efficiency of Perovskite Solar Cells. Journal of Physical Chemistry C. 2020, 124(38) :20765-20772.

[22] Zhu Ma*, et al. Negligible hysteresis planar perovskite solar cells using Ga-doped SnO2 nanocrystal as electron transport layers. Organic Electronics, 2019, 71: 98.

[23] Zhu Ma*, et al. Interfacial modification using ultrasonic atomized graphene quantum dots for efficient perovskite solar cells. Organic Electronics, 2019, 75: 105415.

[24] Zhu Ma, et al. Efficient Defect Passivation for High Performance Perovskite Solar Cell by Adding Alizarin Red S. Journal of Materials Science, 2021, 56, 19552-19563.

[25] Zhu Ma*, et al. Improving the performance of lead acetate-based perovskite solar cells via solvent vapor annealing. Crystengcomm, 2019, 21: 4753.

[26] Zhu Ma*, et al. Regulated perovskite crystallinity via green mixed antisolvent for efficient perovskite solar cells. Organic Electronics, 2019, 69: 69-76.

[27] Zhu Ma, et al. Hole transport materials doped to absorber film for improving the performance of the perovskite solar cells. Materials Science in Semiconductor Processing. 2019, 98 : 113-120.

[28] Zhu Ma*, et al. γ-MPTS-SAM modi?ed meso-TiO2 surface to enhance performance in perovskite solar cell. Materials Science in Semiconductor Processing, 2019, 97: 21-28.

[29] Zhu Ma*, et al. Stable perovskite solar cells with improved hydrophobicity based on BHT additive. Nano, 2019, 14(2), 1950022.

[30] Zhu Ma*, et al. Mixed-phase Mesoporous TiO2 Film for High Efficiency Perovskite Solar Cells. Chemical Research in Chinese Universities, 2019, 35(1) :101-108.

[31] Zhu Ma*, et al. Enhanced electron extraction using ZnO/ZnO-SnO2 solid double-layer photoanode thin films for efficient dye sensitized solar cells. Thin Solid Films. 2019, 71 : 98-105.

[32] Zhu Ma*, et al. Surface grain boundary passivation via mixed antisolvent and PC61BM assistant for stable perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2018, 30: 3511-3520.

[33] Zhu Ma*, et al. Crystal recombination control by using Ce doped in mesoporous TiO2 for efficient perovskite solar cells. RSC Advances, 2018, 9: 1075-1083.

[34] Zhu Ma, et al. One-step RF magnetron sputtering method for preparing Cu(In, Ga)Se2 solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29(14), 11755-11762.

[35] Zhu Ma*, et al. Low temperature dynamic vacuum annealing of ZnO for improved inverted polymer solar cells. RSC Advances, 2017, 7(47):29357-29363.

[36] Zhu Ma, et al. TiO2 photoanode surface modification via combined action of samarium and titanium salt in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells. 2017, 165:45-51.

[37] Zhu Ma, et al. Influence of biomacromolecule DNA corrosion inhibitor on carbon steel. Corrosion Science. 2017, 125: 68-76.

[38] Zhu Ma, et al. Enhanced Performance for Planar Perovskite Solar Cells with Samarium-Doped TiO2 Compact Electron Transport Layers, The Journal of Physical Chemistry C, 2017;121(37): 20150-7.

[39] Zhu Ma, et al. Effect of novel cytosine-L-alanine derivative based corrosion inhibitor on steel surface in acidic solution. Journal of Molecular Liguids. 2016, 222:109-117.

2、 专利发明

[1] 马柱,黄德军,肖政,晏广元,李小琴,黄跃龙,一种高效钙钛矿太阳能电池及制备方法,ZL202010548568.2。

[2] 马柱,黄德军,肖政,晏广元,吴相宜,黄跃龙,一种能抑制钝化层光分解的钙钛矿太阳能电池及制备方法,ZL202010549648.X。

[3] 马柱,黄德军,肖政,晏广元,李小琴,黄跃龙,一种维生素有机物质修饰的钙钛矿太阳能电池及其制备方法,ZL202010539559.7。

[4] 黄跃龙,金礼芬,马柱,于华,彭长涛,一种钙钛矿太阳能电池,ZL201810596566.3。

[5] 马柱,黄德军,肖政,晏广元,蒋汇丰,黄跃龙,一种能调控碘化铅钝化层生长的钙钛矿太阳能电池及制备方法,ZL202010549650.7。

[6] 马柱,黄德军,肖政,晏广元,李小琴,黄跃龙,一种力致发光的柔性太阳能电池及其制备方法,CN202010539581.1,申请日:2020-06-15。

[7]马柱,肖政,周薇亚,张富,张华,黄德军,基于前氧化空穴传输层的无机钙钛矿太阳能电池及制备方法,CN201910560576.6,申请日:2019-06-26。

[8]马柱,肖政,张富,周薇亚,黄德军,张华,一种无机钙钛矿太阳能电池及制备方法,CN201910560196.2,申请日:2019-06-26。

[9] 于军胜,马柱,黄伟,周顺良,一种光致弯曲导电执行器及其制备方法,ZL201210502364.0

[10] 于军胜,马柱,李璐,蒋亚东,一种柔性发光器件用基板及其制备方法,ZL201110096395.6

[11] 于军胜,马柱,李璐,蒋亚东,一种柔性光电子器件用基板及其制备方法,ZL201110097113.4

[12] 陈珉,于军胜,马柱,郑毅帆,一种光致弯曲柔性导电基板及其制备方法,ZL201210502714.3

[13] 于军胜,文雯,马柱,蒋亚东,一种有机电致发光器件及其制备方法,ZL201010574249.5

[14] 于军胜,陈苏杰,马柱,蒋亚东,一种柔性光电子器件用基板及其制备方法,ZL201110097125.7

[15] 于军胜,李璐,马柱,蒋亚东,一种柔性发光器件用基板及其制备方法,ZL201110096409.4

[16] 于军胜,李璐,马柱,蒋亚东,一种柔性发光器件用基板及其制备方法,ZL201110096391.8

[17] 于军胜,李璐,马柱,蒋亚东,一种柔性发光器件用基板及其制备方法,ZL201110096982.5

[18] 于军胜,余双江,马柱,蒋亚东,一种有机光电子器件的封装对位装置及其封装方法,ZL201010127087.0

[19] 于军胜,李璐,蒋亚东,马柱,一种有源驱动有机电致发光器件及其制备方法,ZL201010120806.6

[20] 蒋亚东,于军胜,李璐,马柱,一种柔性发光器件用基板及其制备方法,ZL201110096429.1

[21] 于军胜,余双江,蒋亚东,马柱,一种有机光电子器件的封装装置及其封装方法,ZL201010127080.9

获奖与荣誉

1. 2022年获批校级高等皇家永利改革研究项目“新能源学科交叉性本科人才培养共同体模式的探索与实践”。

2. 2022年获批省级高等皇家永利改革研究项目“卓越学术引领创新思维,产研合作助力双创实践”。

3. 2022年获批皇家永利产教融合建设项目“皇家永利光伏产业产教融合综合示范基地”(参与)。

4. 2022年获批课程思政示范教学团队“新能源专业《固体物理》示范教学团队”。

5. 2022年获皇家永利高校大学生材料设计大赛三等奖。

6. 2021年获批教育部产学合作协同育人项目,“新能源科学与工程专业产教融合的研究”。

7. 2021年获批校级课程思政示范专业项目“新能源科学与工程示范专业建设”。

8. 2018, 2020,2022年分别获的校级优秀生生产实习队一等奖,二等奖,三等级,2022年获校级优秀实习指导老师。

9. 2021年获校级青年教师教学竞赛二等奖。

10. 12021年获校级教学成果奖“六措并举”、“三三联动”,行业高校能源特色材料学科人才培养模式探索与实践”一等奖(参与)。

11. 指导国家级和省级创新创业训练计划共计3项,指导6项校级重点与普通开放实验。

上一条:俞健 下一条:谢佳乐

关闭