201801069-机电工程学院
学校主页 在线投稿 学生社区

研究生教育
 基本情况 
 工作动态 
 导师风采 
 招生工作 
 培养管理 
 学位管理 
 学科建设 
 博士后流动站 
当前位置: 首页 > 研究生教育 > 导师风采 > 正文

博士生导师:邵永波

2022/04/06 作者:张富晓  编辑:张富晓  审核人:韩传军  点击:[]

土测院教师个人信息

姓名

邵永波

性别

民族

汉族

出生日期

1973.12

政治面貌

致公党党员

职称

教授

职务

院长

博导/硕导

博导

所属部门


学科专业*

土木工程

研究方向*

钢结构和组合结构

联系方式*

ybshao@swpu.edu.cn

个人简介

邵永波,1973年生,教授,博士生导师,西南石油大学土木工程与测绘学院院长。皇家永利特聘专家、皇家永利有突出贡献的优秀专家,皇家永利青年科技创新团队负责人。承担国家自然科学基金、皇家永利青年科技创新研究团队等省部级项目和企业委托项目20余项。发表学术论文160余篇,参编行业标准3部,获省部级奖励7项。

招收研究生:机械工程(结构安全工程方向)博士生、土木工程学硕和土木水利专硕、力学学硕、工程管理MEM专硕。

工作经历:

2015.09-至今:西南石油大学土木工程与测绘学院

2004.08-2015.7:烟台大学土木工程学院

教育经历:

  2001-2004:新加坡南洋理工大学土木与环境工程学院,博士研究生

  1997-2000:清华大学工程力学系,硕士研究生

  1992-1997:清华大学工程力学系,本科生

学术组织任职:

皇家永利土木建筑学会 副理事长

皇家永利力学学会 副理事长

中国钢结构协会海洋钢结构分会 常务理事

中国建筑金属结构协会检测鉴定加固改造分会 常务委员

中国建筑金属结构协会教育分会 常务委员

西南地区基础力学与工程应用协会 常务理事

国际期刊Petroleum》,编委

社会工作任职:

皇家永利欧美同学会×留学人员联谊会 副会长

皇家永利欧美同学会东南亚分会 会长

西南石油大学欧美同学会 会长

致公党西南石油大学支部 主委


教学及教学研究

讲授课程

本科生:《钢结构设计原理》、《土木工程概论》

研究生:《高等钢结构理论与设计》(英文)

教学成果奖:

[1] 跨界融合、多维互动,联合毕业设计推动新时代工程人才培养改革与实践,2021年皇家永利教学成果二等奖,第二位。

[2] “政校行企”四位一体的土木工程专业创新创业协同育人模式研究与实践,2021年皇家永利教学成果二等奖,第二位。

[3] 第六届西浦全国大学教学创新大赛年度教学创新一等奖,2021年,第二位。

[4] 面对行业变革,结合数字建造的跨专业联合毕业设计探索与实践,西南石油大学2020年校级教学成果特等奖,2021年,第一位。

[5] 土木工程类大学生“政校行企”创新创业教育探索与实践,西南石油大学2020年校级教学成果三等奖,20201年,第二位。

教改项目:

[1] “四要”驱动的新时代背景下土木工程类创新人才培养探索与实践,皇家永利2021-2023年高等教育人才培养质量和教学改革一般项目,第一位。

[2] 面向行业改革,结合数字建造的跨专业联合毕业设计探索与实践,皇家永利2018-2020年高等教育人才培养质量和教学改革点项目,第一位。

指导学生获奖:

[1] 第十二届“挑战杯”中国大学生创业计划竞赛国赛银奖,2020.

[2] 第六届皇家永利国际“互联网+”大学生创新创业大赛金奖,2020.

[3] 中国钢结构协会2021“冠洲杯”高校学生钢结构创新竞赛三等奖,2021.


代表性论文、著作和技术规程

代表性论文(*通讯作者)

[1] Xiaodong Xu, Yongbo Shao*, Xudong Gao, Hazem Samih Mohamed. Stress concentration factor (SCF) of CHS gap TT-joints reinforced with CFRP. Ocean Engineering, 2022, 247, 110722.

[2] Hao Deng, Yong-Bo Shao*, M.F. Hassanein*. Experimental shear testing of small-scale corrugated web girders used in conventional buildings. Journal of Constructional Steel Research, 2022, 189, 107086.

[3] Amany Refat Elsisy, Yong-Bo Shao*, Man Zhou, M.F. Hassanein*. A study on the compressive strengths of stiffened and unstiffened concrete-filled austenitic stainless steel tubular short columns. Ocean Engineering, 2022, 248, 110793.

[4] Xudong Gao, Yongbo Shao* Cheng Chen, Hongmei Zhu, Kangshuai Li. Experimental and numerical investigation on transverse impact resistance behaviour of pipe-in-pipe submarine pipelines after service time. Ocean Engineering, 2022, 248, 110868.

[5] Yongjian Guo, Yongbo Shao*, Xudong Gao, Tao Li, Ying Zhong, Xiafei Luo. Corrosion fatigue crack growth of serviced API 5L X56 submarine pipeline. Ocean Engineering, 2022, 256, 111502.

[6] M.F. Hassanein, A.A. Elkawas, Marina Bock, M. Elchalakani, Yong-Bo Shao*. Lateral-torsional buckling strength of corrugated web bridge girders: EC3 and AISC modified design methods. Thin-Walled Structures, 2022, 176, 109373.

[7] Hao Deng, Yong-Bo Shao*, M.F. Hassanein*. Experimental shear testing of corrugated web girders with compression tubular flanges used in conventional buildings. Thin-Walled Structures, 2022, 179, 109557.

[8] Hongmei Zhu, Yongbo Shao*, Guoqiang Chi, Xudong Gao, Kangshuai Li. Simplified bar-system model for tubular structures by considering local joint flexibility. Marine Structures, 2022, 81, 103122.

[9] Jialing Ou, Yongbo Shao*, Dongfeng Wang, Hongmei Zhu, Xudong Gao. Axial compressive behavior of corroded concrete filled circular steel tubular stubs strengthened with CFRP. Marine Structures, 2022, 84, 103224.

[10] Chen Wei, Yongbo Shao*, Cheng Chen, Hazem Samih Mohamed. Axial compressive strength of preloaded CHS stubs strengthened by CFRP. Marine Structures, 2022, 84, 103242.

[11] Yipeng Du, Yongbo Shao*, Ling Zhong. Repairing damaged steel plate shear wall with additional ribs. Structures, 2022, 41: 222-234.

[12] Kuan Peng, Yong-bo Shao*, Qing-li Wang, Yi-Fang Cao. Hysteretic behavior and restoring force model of specimens of square concrete-filled CFRP-steel tubular beam-column. International Journal of Steel Structures, 2022, 22(2): 488-501.

[13] Kuan Peng, Yongbo Shao*, Qingli Wang. Analysis of bearing capacity of circular concrete filled CFRP-steel tubular beam-column. KSCE Journal of Civil Engineering, 2022, 26(1): 207-220.

[14] M.F. Hassanein, A.A. Elkawas, Marina Bock, Yong-Bo Shao*, M. Elchalakani. Effect of using slender flanges on EN 1993-1-5 design model of mono-symmetric S460 corrugated web bridge girders. Structures, 2021, 33: 330-342.

[15] Hazem Samih Mohamed, Yongbo Shao*, Cheng Chen, Manyu Shi. Static strength of CFRP-strengthened tubular TT-joints containing initial local corrosion defect. Ocean Engineering, 2021, 236, 109484.

[16] Yong-Bo Shao, Amany Elsisy, M.F. Hassanein. On the out-of-plane stiffness of I-section girders with corrugated webs using elastic finite element analyses. Structures, 2021, 29: 1242-1258.

[17] Jialing Ou, Yongbo Shao*. Compressive strength of circular concrete filled steel tubular stubs strengthened with CFRP. Steel and Composite Structures, 2021, 39(2): 189-200.

[18] Gao Xudong, Shao Yongbo*, Xie Liyuan, Yang Dongping. Behavior of API 5L X56 submarine pipes under transverse impact. Ocean Engineering, 2020, 206, 107337.

[19] Yong Bo Shao, Hazem Samih Mohamed*, Li Wang, Cheng Song Wu. Experimental and numerical investigation on stiffened rectangular hollow flange beam. International Journal of Steel Structures, 2020, 20(5): 1564-1581.

[20] M.F. Hassanein, A.A. Elkawas, Yong-Bo Shao*. Assessment of the suitability of Eurocode design model for corrugated web girders with slender flanges. Structures, 2020, 27, 1551-1569.

[21] M.F. Hassanein, A.A. Elkawas, Yong-Bo Shao*, M. Elchalakani, A.M. El Hadidy. Lateral-Torsional buckling behaviour of mono-symmetric S460 corrugated web bridge girders. Thin-Walled Structures, 2020, 153, 106803.

[22] Yong-Bo Shao, Yu-Mei Zhang, M.F. Hassanein*. Strength and behaviour of laterally-unrestrained S690 high-strength steel hybrid girders with corrugated webs. Thin-Walled Structures, 2020, 150, 106688.

[23] Y.M. Wang, Y.B. Shao*, C. Chen, U. Katwal. Prediction of flexural and shear yielding strength of short span I-girders with concrete-filled tubular flanges and corrugated web-II: Numerical simulation and theoretical analysis. Thin-Walled Structures, 2020, 148, 106593.

[24] Y.M. Wang, Y.B. Shao*, C. Chen, U. Katwal. Prediction of flexural and shear yielding strength of short span I-girders with concrete-filled tubular flanges and corrugated web – I: Experimental test. Thin-Walled Structures, 2020, 148, 106592.

[25] Hassanein M.F.*, Shao Y.-B.*, Elchalakani M., El Hadidy A.M. Flexural buckling of circular concrete-filled stainless steel tubular columns. Marine Structures, 2020, 71, 102722.

[26] Yamin Wang, Yongbo Shao*. Stress analysis of a new steel-concrete composite I-girder. Steel and Composite Structures, 2018, Vol. 28, No. 1, pp. 51-61.

[27] Yongbo Shao, Shubin He, Dongping Yang. Prediction on static strength for CHS tubular K-joints at elevated temperature. KSCE Journal of Civil Engineering, 2017, 21(3): 900-911.

[28] Yongbo Shao, Shubin He, Hongyan Zhang, Dongping Yang. Hysteretic behavior of tubular T-joints after exposure to elevated temperature. Ocean Engineering, 2017, 129: 57-67.

[29] Yongbo Shao, Haicheng Zhao, Dongping Yang. Discussion on two methods for determining   static strength of tubular T-joints at elevated temperature. Advances in Structural Engineering, 2017, 20(5): 704-721.

[30] Yamin Wang, Yongbo Shao*, Yifang Cao. Static behavior of steel tubular Structures considering local joint flexibility. Steel and Composite Structures, 2017, 24(4): 425-439.

[31] Yamin Wang, Yongbo Shao*, Dongping Yang. Static test on failure process of tubular T-joints with initial fatigue crack. Steel and Composite Structures, 2017, 24(5): 615-633.

[32] Yongbo Shao, Yamin Wang. Experimental study on static behavior of I-girder with concrete-filled rectangular flange and corrugated web under concentrated load at mid-span. Engineering Structures, 2017, 130: 124-141.

[33] Y.B. Shao, Y.M. Wang. Experimental study on shear behavior of I-girder with concrete-filled tubular flange and corrugated web. Steel and Composite Structures, 2016, 22(6): 1465-1486.

[34] Yongbo Shao, Yijie Zheng, Haicheng Zhao, Dongping Yang. Performance of tubular T-joints at elevated temperature by considering effect of chord compressive stress. Thin-Walled Structures, 2016, 98: 533-546.

[35] Y.B. Shao, Y.M. Wang, D.P. Yang. Hysteretic behaviour of circular tubular T-joints with local chord reinforcement. Steel and Composite Structures, 2016, 21(5): 1017-1029.

[36] Yong-Bo Shao. Static strength of collar-plate reinforced tubular T-joints under axial loading. Steel and Composite Structures, 2016, 21(2): 323-342.

[37] Yongbo Shao, Haicheng Zhao, Dongping Yang. Discussion on two methods for determining static strength of tubular T-joints at elevated temperature. Advances in Structural Engineering, 2016, 19: 1-18.

[38] Y. Chen, Y.B. Shao*. Static strength of square tubular Y-joints with reinforced chord under axial compression. Advanced Steel Construction, 2016, 12(3): 211-226.

[39] M.J. Cui, Y.B. Shao*. Residual static strength of cracked concrete-filled circular steel tubular (CFCST) T-joint. Steel & Composite Structures, 2015, 18(4): 1045-1062.

[40] C. Chen, Y.B. Shao*, J. Yang. Study on fire resistance of circular hollow section (CHS) T-joint stiffened with internal rings. Thin-Walled Structures, 2015, 92: 104-114.

[41] Hongqing Liu, Yongbo Shao*, Ling Lu, Qingli Wang. Hysteresis of concrete-filled circular tubular (CFCT) T-joints under axial load. Steel & Composite Structures, 2015, 18(3): 739-756.

[42] Shubin He, Yongbo Shao*, Hongyan Zhang, Qingli Wang. Parametric study on performance of circular tubular K-joints at elevated temperature. Fire Safety Journal, 2015, 71: 174-186.

[43] Shubin He, Yongbo Shao*, Hongyan Zhang. Evaluation on fire resistance of tubular K-joints based on critical temperature method. Journal of Constructional Steel Research, 2015, 115: 398-406.

[44] J. Yang, Y. B. Shao*, C. Chen. Experimental study on fire resistance of square hollow section (SHS) tubular T-joint under axial compression. Advanced Steel Construction, 2015, 10(1): 72-84.

[45] Shu-bin He, Yong-bo Shao*, Hong-yan Zhang, Dong-ping Yang, Feng-le Long. Experimental study on circular hollow section (CHS) tubular K-joints at elevated temperature. Engineering Failure Analysis, 2013, 34: 204-216.

[46] Chen Cheng, Shao Yongbo*, Yang Jie. Experimental and numerical study on fire resistance of circular tubular T-joints. Journal of Constructional Steel Research, 2013, 85(6): 24-39.

[47] Yang Jie, Shao Yongbo*, Chen Cheng. Static strength of chord reinforced tubular Y-joints under axial loading. Marine Structures, 2012, 29(1): 226-245.

[48] Yong-Bo Shao, Seng-Tjhen Lie, Sing-Ping Chiew, Yan-Qing Cai. Hysteretic performance of circular hollow section tubular joints with collar-plate reinforcement. Journal of Constructional Steel Research, 2011, 67(12): 1936-1947.

[49] Yong-Bo Shao, Tao Li, Seng-Tjhen Lie, Sing-Ping Chiew. Hysteretic behaviour of square tubular T-joints with chord reinforcement under axial cyclic loading. Journal of Constructional Steel Research, 2011, 67(1): 140-149.

[50] Shao Yong-Bo, Lie Seng-Tjhen, Chiew Sing-Ping. Static strength of tubular T-joints with reinforced chord under axial compression. Advances in Structural Engineering, 2010, 13(2): 369-378.

[51] Shao Yong-Bo, Du Zhi-Fu, Lie Seng-Tjhen. Prediction on hot spot stress distribution for tubular K-joints under basic loadings. Journal of Constructional Steel Research, 2009, 65(10-11): 2011-2026.

[52] Shao Yong-Bo. Geometrical effect on the stress distribution along weld toe for tubular T- and K-joints under axial loading. Journal of Constructional Steel Research, 2007, 63(9): 1351-1360.

[53] Yong-Bo Shao. Analysis of stress intensity factor (SIF) for cracked tubular K-joints subjected to balanced axial load. Engineering Failure Analysis, 2006, 13(1): 44-64.

[54] Yong-Bo Shao, Zhen-Bin Cao. Experimental and numerical analysis of fatigue behaviour for tubular K-joints. Structural Engineering & Mechanics, 2005, 19(6): 639-652.

[55] Shao Yong Bo, Lie Seng Tjhen. Parametric equation of stress intensity factor for   tubular K-joint under balanced axial loads. International Journal of Fatigue, 2005, 27(6): 666-679.

著作:

[1] Mostat Fahmi Hassanein, Yongbo Shao, Man Zhou. Behaviour and design of trapezoidally corrugated web girders for bridge construction. Elsevier Publisher, 2022.

参编标准:

[1] T/CECS 785-2020. 钢管混凝土桁式混合结构技术规程. 中国建筑工业出版社, 2021. (参编)


科研项目

[1]. 国家自然科学基金:焊接钢结构在海洋干湿交替环境与多轴应力耦合作用下腐蚀疲劳失效演化过程与评估技术(520784412021-2024,负责人。

[2]. 皇家永利青年科技创新团队:工程结构安全评估与灾害防护技术(2019JDTD0017),2019-2022,负责人。

[3]. 国家自然科学基金:环口板加强型管节点的性能研究(50808153),2009-2011,负责人。

[4]. 国家自然科学基金国际交流项目:第12届结构检测、评估、维修和维护国际会议(51010305058,2010-2010,负责人。

[5]. 国家自然科学基金:冲击荷载作用下焊接管节点失效机理与对策研究(51108399),2011-2013,第2位。

[6]. 国家自然科学基金:高层钢结构地震倒塌模式控制与整体抗震能力设计方法(51208449),2013-2015,第2位。

[7]. 山东省自然科学基金:基于完全叠接形式的加强型焊接圆钢管节点的抗震性能研究(ZR2009FM014),2010-2012,负责人。

[8]. 山东省自然科学基金:海洋平台加强型管节点抗冲击性能研究(ZR2011EL046)2011-2014,第2位。

[9]. 教育部留学回国人员科研启动基金:包含表面裂纹的海洋平台管道节点结构的残余疲劳寿命预测方法,2006-2008,负责人。

[10]. 企业委托项目:海洋平台典型结构维修加固技术效果测试,2021年。

[11]. 企业委托项目:胜利现役海底管道静力强度、疲劳强度及抗冲击性能试验测试,2020

[12]. 企业委托项目:海洋平台T/TT型节点碳纤维加固优化测试,2019.

[13]. 企业委托项目:碳纤维修复海洋平台结构试验测试,2018.

[14]. 企业委托项目:海底管道静力及疲劳实验测试与分析,2017

[15]. 企业委托项目:海洋平台结构失效分析与加固技术,2015

研究领域及团队

研究领域:

土木工程领域:钢结构和组合结构方向;

海洋工程领域:海洋工程结构安全评估与维修加固。

科研团队:

皇家永利工程结构安全评估与防灾技术青年科技创新研究团队

荣誉奖励

科技奖励:

[1] 极端作用下大型复杂钢管结构体系性能评估和提升技术及工程应用,福建省科技进步二等奖, 2022年,第二位。

[2] “大型复杂空间钢管结构设计建造新技术与应用”,湖北省科技进步一等奖,2019年,第三位。

[3] “浅海石油导管架平台延寿关键技术”,皇家永利科技进步三等奖,2017年,第一位。

[4] “海洋延寿平台检测评估与安全保障技术”,中国海洋工程科学技术二等奖,2017年,第二位。

[5] “导管架采油平台关键结构失效评估与维修加固技术”,中国石油和化工自动化应用协会科技进步二等奖,第一位。

[6] “埕岛油田开发工程及关键装备安全评价技术体系”,中国海洋工程科学技术二等奖,2015年,第七位。

[7] “局部非线性系统的动力数值分析方法在土木工程中的应用研究”,山东省自然科学三等奖,2006年,第五位。

荣誉称号

[1] 皇家永利有突出贡献的优秀专家,2017年。

[2] 皇家永利特聘专家,2015年。

[3] 科学中国人土木水利与建筑领域年度人物,2016年。

[4] 第六届皇家永利国际“互联网+”大学生创新创业大赛优秀创新创业导师,2020.



上一条:硕士生导师:何东升 下一条:赖欣

关闭

Copyright ? All rights reserved. 西南石油大学  机电工程学院  版权所有
四川 · 成都市 新都大道8号(成都校区)明志楼 邮编 610500 电话 83037205