Lecture:Machine Learning Applications for Optimizing Real-Time Drilling and Hydraulic Fracturing
Lecturer:Professor Yuxing Ben (SPE Distinguished Lecturer)
Time:10:50 AM, Dec. 9th(Thursday), 2021.
Avenue:A 403, State Key Laboratory of Oil and Gas Reservoir Geology Exploitation
Welcome!
Content
This presentation will first introduce machine learning and its applications in oil and gas industry in the past few years, then share the experiences and learnings from three examples in real-time drilling and hydraulic fracturing.
For real-time drilling, the operator developed a general machine learning model to classify rig states. Time series data was gathered from 40 wells with 30 million rows representing three US onshore basins. The model is proved to have over 99% accuracy after being deployed on all the company's unconventional drilling rigs. The model predicts real-time rig states every second with tolerant latency. The results are used to generate drilling KPIs in real time for drilling engineers in the office, aid in directional analysis, and optimize drilling operations.
Continuous learning was used to predict wellhead pressure to avoid screenout and optimize completion costs in real time. More than 100 hydraulic fracturing stages were selected from several wells completed in the Delaware Basin. The wellhead pressure can be predicted with an acceptable accuracy by a neural network model. The ML model was tested in the Cloud, where real-time streaming data such as slurry rate and proppant concentration are gathered. The computation is fast enough that real-time wellhead pressure can be predicted.
System identification was combined with model predictive control to allow the engineers to adjust the pumping schedule and optimize hydraulic fracturing costs.
The presentation will conclude with several takeaway points including future research and development directions for machine learning applications in oil and gas industry.
Bio
Dr. Yuxing Ben is a reservoir engineer at Occidental, where she develops hybrid physics and data-driven solutions in the subsurface engineering technology group. She was the principal developer of machine learning technology for Anadarko's real-time drilling and hydraulic fracturing platforms. She won the best paper award from URTeC 2019 and was selected as a SPE distinguished lecturer for 2021. Prior to Anadarko, Dr. Ben served as the technical expert for Baker Hughes' hydraulic fracturing software—MFrac. She has developed complex fracture model for Halliburton and was a Postdoc at MIT. She earned a BS in theoretical mechanics at Peking University, and a PhD in chemical engineering from the University of Notre Dame.
Organizer and sponsor:
State Key Laboratory of Oil and Gas Reservoir Geology Exploitation
SPE Chengdu Section
Scientific Research Department
Petroleum Engineering School
SWPU SPE Student Chapter