当前位置: 首页 >> 学术报告 >> 正文

Dynamics for a three-species predator-prey model with density-dependent motilities

来源:明理楼C302B     报告人:穆春来    审核:    编辑:沈立芹     发布日期:2021年10月29日    浏览量:[]

报告题目:Dynamics for a three-species predator-prey model with density-dependent

motilities

报告人:穆春来(重庆大学,教授、博导)

报告时间:2021年10月30日16:00-18:00

报告地点:明理楼C302B

摘要: This talk deals with a general cross-diffusion system modeling the dynamics

Behavior of two predators and one prey with signal-dependent diffusion and sensitivity subject to homogeneous Neumann boundary conditions. Firstly, in light of some L^p-estimate techniques, we rigorously prove the global existence and uniform boundedness of positive classical solutions in any dimensions with suitable conditions on motility functions and the coefficients of logistic source. Moreover, by constructing some appropriate Lyapunov functionals, we further establish the asymptotic behavior of solutions to a specific model with Lotka-Volterra type functional responses and density-dependent death rates for two predators as well as logistic type for the prey. Our results not only generalize the previously known one, but also present some new conclusions.

报告人简介:穆春来教授是教育部新世纪优秀人才、国家一流专业负责人、市学术技术带头人、市数学会副理事长。2019获教育部自然科学奖二等奖、2016获重庆市自科奖二等奖、2014获国家教学成果二等奖。承担国家自科基金、市重点基金等20余项。从事非线性偏微分方程和生物数学研究,在“M3AS、J. Diff. Eq.、J. Sci. Comput.、中国科学”等权威期刊发表论文200余篇。

热烈欢迎全校师生参加学术交流!

举办单位:科研处、理学院、人工智能研究院

关闭